Home, My Views

My Views- Science Communication & Scientific Literacy

Hey Guys!

First of all, I’m sooooooooo sorry for breaking my promise and stuff. I know this is super terrible because yeah (breaking promises is bad). To make up for it, i will (probably) be writing more posts (so as long as Julian continues to pester me ceaselessly). I still want to aim for the 1 post every fortnight goal and i’ll still keep trying to achieve that someday.

Make sure you know what you’re getting yourself into before making a promise to a bunch of people

-Clyde Lhui 2016

Lately i have been getting into a lot of stuff. Stuff like learning Japanese, photography, music, cooking and a bunch of other stuff. I might be writing posts about those in future so yeah (i know i say this a lot and end up not writing but oh wells).

Well as you can probably tell by the title, this post is about science communication and scientific literacy (pretty self explanatory i guess). I feel very strongly about these 2 topics and that’s why I’m writing this post.

So first off, DEFINITIONS!

Science communication generally refers to public communication presenting science-related topics to non-experts. This often involves professional scientists (called “outreach” or “popularization”), but has also evolved into a professional field in its own right. It includes scienceexhibitions, journalism, policy or media production.

-Wikipedia

And…

Scientific literacy is the knowledge and understanding of scientific concepts and processes required for personal decision making, participation in civic and cultural affairs, and economic productivity. It also includes specific types of abilities.

-Literacynet.org

 

I know that you guys could have easily googled that but hey, 10 seconds saved is 10 seconds saved 🙂

So in short, science communication is talking to people who aren’t scientists about science and scientific literacy is knowing enough science to make logical and good decisions.

I think you are beginning to see how these 2 things are linked.

Perhaps i should further explain why i decided to write this post. In my daily life, i spend a lot of time with my friends (who are largely a group of nerds (who mostly take pride in their nerdhood)) and my family. Since i love science and i spend a lot of my time with my friends  (who are nerds), we spend a lot of time talking about science and related topics. As such, when i talk to my family about a ‘science related topic’ (I’ll explain the apostrophe later), i notice whenever something is off.

My aunts and uncles like to send long WhatsApp messages about stuff they hear from their friends and 95% of those messages that i end up reading are wrong in one way or another. My mum once showed me this video:

Well I think most of you can see why this video is wrong.

(In case you didn’t figure it out, your stomach is part of your body which is at 37 degrees Celsius for the most part)

(Also ice water warming up is kind of a thing)

I know some of you must be thinking: “I’m not stupid, i wouldn’t believe things that don’t make sense.”

Well there are quite a lot of things that people misunderstand.

For starters, nuclear power. I am a strong advocate for nuclear power. It’s clean, reliable and fairly safe. Unlike solar panels or wind turbines that stop working once the sun stops shining or the wind stops blowing, nuclear power plants can work 24/7 and supply enough power to support entire power grids. Furthermore, new nuclear plant designs which have improved safety features are constantly being suggested, making future power plants safer than before. Despite this, many people have a very negative impression of nuclear power.

Image result for nuclear power plant cooling tower

Does this look familiar?

Well it should. I have seen countless news reports about climate change showing images or videos these pumping out massive white clouds.

The only thing is these are the cooling towers of nuclear power plants.

Most people see these images and go “OH NO! We are pumping all that carbon dioxide into the atmosphere!?”. However, the white clouds coming out of the cooling towers are literal clouds: clouds of water droplets.

(Hopefully) by now you should understand the fact that we are prone to having a lot of misconceptions. It could be due to the way the media presents facts, the way social media promotes controversial content or any other reason out there. Regardless of the reason, i hope that you understand that this is pretty bad and it’s something that is extremely hard to avoid. I myself cannot claim that all the knowledge i possess is 100% accurate (in fact i do get things wrong pretty often).

What i hope you get out of reading this post is that knowledge is never absolute and that life and learning is all about constantly renewing our knowledge by being sceptical and challenging our own beliefs. We all need to keep reading and keep discussing so as to improve the accuracy of our knowledge. I think it’s also important for us to keep an open mind and not to immediately say “No that’s wrong.” when someone has contrasting beliefs (well you could but remember to provide your reasons and explain your views).

Never stop questioning your beliefs and perhaps one day there won’t be Geography teachers believing that the Earth goes around the sun in a day and rotates once around its axis in a year.

Thanks for reading!

Clyde Lhui 🙂

Home, My Views

Is Everything a Miracle?

Hi Guys,

Yes, somehow i have managed to find time to blog yet again. This time I’m going to talk (or actually, write) about a quote and some things i have been thinking about lately. This post will probably include some science but it won’t be too content heavy. Rather, this post will be about how those science concepts apply to our life.

Now back to that quote.

The quote i am talking about is one by the famous theoretical physicist (and one of the physicists who i greatly respect), Albert Einstein.

“There are only two ways to live your life. One is as though nothing is a miracle. The other is as though everything is a miracle.”

-Albert Einstein

Pretty straightforward eh? Essentially, you can either believe that everything is predetermined or everything just happens magically.

The scientific concept that i will be including in this post is the quantum theory. Don’t get me wrong, i am no expert in this field of science and i am open to criticism (if i do write something wrong). And i feel that it’s because of this ‘quantum theory’ that ‘Newtonian Mechanics’ are described as ‘Newtonian Mechanics’. The quantum theory is what caused physics to change so much, to a point where an entirely new field of physics had to be created.

I was introduced to this field of physics in primary school. As you may or may not have read in my previous posts, my science teacher at the time referred me to this field in particular as i asked him quite a lot about how particles worked. This was the thing that i was trying to understand at the time and i failed so terribly to do so. I tried to find some means to figure out what this field of physics was and what it entailed, but every time i tried to poke at the topic, super complicated physics would just pop out and i would be confused about everything i was reading. As i entered secondary school, all of the teachers who mentioned quantum physics in their classes would describe it as a module they had to take up in university where the professor came into the room, wrote a bunch of mathematical equations on the board which they copied as notes, and left without understanding a single thing. When the teachers told me about this, i was extremely intrigued. What was this thing that was so difficult to understand? It was only when i entered CΩergy. I remembered the day of my first CΩergy lesson rather clearly. At the end of the lesson, i asked my CΩergy teacher, Mr Damian Boh, a few questions. If i’m not wrong, i asked him whether light had mass and he told me about quantum physics. He used the example of quantum tunneling (now a favorite joke among us CΩergy boys) where the idea that a particle could overcome an energy barrier just by chance or in some cases ‘teleporting’. From then on, i got really interested in this part of science, discussing it with the rest of the CΩergy group. And i have to say, it was one of the most CRAZY topics that i have ever discussed about with other people. It has led me to so many new discussions and debates due to its innate quirkiness.

And now i shall explain what i know about quantum physics.

Firstly, why is quantum physics called quantum physics? Because part of it describes practically everything to be discrete or in fixed units. An example would be length. Quantum physics says that length is discrete not continuous. In math, i can have as small a unit of length i want. 0.0000000000000000000000000000001 nanometers? In math, that isn’t an issue. Even in Classical mechanics (aka Newtonian mechanics), i can have infinitely small units of length. If i wanted something to be shorter, i could make it smaller. But in quantum physics, no. It’s not just about the fact that the most fundamental particles have some length and no matter could ever have a length smaller than that of those particles, but it’s about the fact that the idea of ‘length’ does not exist after a certain point. And that point is known as the Planck’s length. Nothing can be smaller than Planck’s length. You may thing ‘Well all we have to do is cut Planck’s length into 2 and we will have a smaller unit of length’ but no. In this UNIVERSE there is no such thing as length after the Planck’s length. What is half of Planck’s length? Nothing. Because it;s not called length anymore. Isn’t that crazy?

Another way to explain this is this. Imagine i shrinked you down to the size of a quark and now a quark is the size of a ball. You push the ball. But if you don’t push it with enough force to move at a certain speed, it would not move. It’s either it moves at speed x or it doesn’t move at all.

Secondly, quantum physics is about probability. The position of a particle is not definite. When you see an electron, it may not be there but it’s just a high chance that it’s there. This also applies to things such as electron clouds.

And it is due to the probabilistic nature of quantum physics that links to the above quote.

Since everything is made out of fundamental particles, and the way fundamental particles interact and behave is governed by the quantum theory (at least for now), you could say that everything is governed by the quantum theory. Though this effect is diluted by the fact that we are extremely large creatures (or objects rather) for quantum effects to take place, sometimes extremely small things can affect us in large ways. There is this joke i saw in a video about time travel (which i agree to some extent). It talks about a time traveler who goes back in time and accidentally steps on an ant which ultimately results in large changes in human biology. This could possibly be true. A small event (in this case the death of an ant) could cause something else to happen which causes another thing to happen which may result in large changes in the future (in this case changes in human biology). Therefore, quantum effects that affect the smallest of particles could have an effect on our fate. This separates classical mechanics and quantum mechanics.

In the past, people thought that with sufficient information, we could predict the fate of the entire universe. This was due to the fact that laws that were so well established were present at the time. Though these laws stand true i most cases, especially with large objects (aka things that are made of large numbers of atoms/molecules). However, when we peered into the quantum world, we discovered that sometimes things happen just by chance, in some cases defying the laws of classical physics like random particles appearing and disappearing in short periods of time due to the uncertainty principle for energy and time(which defies the law of conservation of energy). This was when we realised, maybe we aren’t doomed for things to happen exactly as the laws of physics predict, maybe we could break these barriers, maybe everything really and truly is a MIRACLE.

Einstein did not believe in quantum physics. He tried to defeat the theory but eventually failed. If even one of the greatest theoretical physicists failed to defeat this theory, maybe we should really consider it as very highly likely.

Do you believe that everything is a miracle? Well i certainly do. With chance becoming an element in the physical universe, i believe that everything really is a miracle.

Now that really is some food for thought.

 

Thank you for reading!

Clyde Lhui 🙂

P.s: This is only a very small part of quantum physics. It truly is an awesome part of physics, very intriguing, very fascinating. I would highly recommend you to go read up more about it.

Home, My Views

My Views- Why you shouldn’t hate science

Hi guys,

I decided to type this post because I’ve been thinking about this topic more frequently lately.

This year, i have had the chance to participate as a facilitator in an event organized by Singapore Chinese Girls’ School (SCGS) called Open Little Eyes (OLE). I participated in this event together with a few friends from my school. Through the event, i have made several new friends, who are either the same age as me (Sec 2) or one year younger than me (Sec 1). I have been talking to them quite a bit even though the event has long ended. When we talk, we usually talk about school and other stuff. However, whenever i bring up the topic about physics or science in general, they would all start freaking out. They have told me multiple times that they do not like science (or physics to me more specific). That made me think more why didn’t so many people like physics or science? Its not just my OLE friends, its practically everyone who I’ve met (excluding some people).

Let’s begin from the start. When Singapore was a very young nation, the government decided to implement mathematics and science into the education system so as to increase the rate of growth of our nation by rapid industrialization which required skills such as proficiency in mathematics and a basic knowledge of scientific concepts. This has to this date remained an integral part of our education system, training critical thinking and the ability of students to solve problems. However, this has caused some students to start feeling doubtful of the subject, some of them even strongly dislike these subjects. I myself have questioned the reason for us to study math and even engaged in a debate with my dad, finally conceding to the fact that mathematics is useful to me.

For a start, lets talk about mathematics. Math used to my second most hated subject in the 4 core subjects (Math, Mother tongue, English and Science). The reason for this hatred? The very nature of mathematics. Math is very repetitive in nature and requires a lot of practice. Without sufficient practice, one may find the subject extremely difficult. In fact, practice is the only way one can master mathematics. Sometimes math may seem useless. Algebra for instance seemed useless to me at the start of last year. I always wondered “Why would i ever need to factorize anything in real life?”. Over time i realized that math was actually very important in real life. Physics requires the use of a lot of math. I also found the fun in math. However it still ranks third in my 4 core subjects. (I still love my English and of course my science).

Now on to the core of this post, why do people dislike science? I found out that the reason lies in others’ perception of the subject. People perceive science as an extremely difficult subject and they stay away from it. In some cases, this fear of the difficulty of science causes their standard of the subject to drop. They get intimidated and they stop trying. I have to admit, i was daunted by secondary school mathematics at first. However after analyzing the subject at a deeper level, i see its beauty and its importance. This then motivated me to try to understand the key concepts rather than just learning how to do the questions. This is also another problem: the fact that students learn only what is required and not trying to progress further. Science is a very broad subject and there are may areas in which people might be interested in. I actually do not like parts of physics. Although its my favorite subject, i still hate certain topics (especially optics). If you stop at what is required of you, you might just miss the interesting parts. The only other reason why people might not like the subject is because of the way that it is being taught. As for this, you might want to consider approaching your friends or your teacher to further inquire. I used to ask many questions and that is what caused me to like science so much. To this day, i’m still asking plenty of questions and it certainly helps in my learning process.

To end off, I wish you all the best in your journey of scientific inquiry and i hope that you have an awesome times studying science. Whatever you do, don’t give up on science and it won’t give up on you.

Regards,

Clyde Lhui 🙂

Home, My Views, Science

My View- Science Education

Hey guys,

Today, I had my Physics paper (or at least when i started to type this post) and as you guys probably know, Physics is my favorite subject. And today i would like to voice out my opinion on science education as a secondary 2 student.

I have been studying science for the past 6 years of my life and it has been a pretty awesome experience. When i first started to learn science, i was really really interested in the subject already. I even began learning beyond my syllabus. By Primary 5, i could already balance equations. This year i have already learned Special Relativity. However, despite the amount of science knowledge i have accumulated, i still feel as though there are some HUGE flaws in my knowledge.

Before i go on to explaining why, let me talk about the 2 periods which i learned the most so far.

The first time i started learning that there was knowledge which was way awesome than i thought possible was in my late Primary school years. I learned about chemistry, physics, biology and such, mostly chemistry though. I learned this mostly through my dad and some from my primary school teachers. I would stay back in school until late in the afternoon, around 4-5pm, asking my science teachers various questions until i decided it was too late to stay any longer and just went home. However during that period, my learning pace was extremely slow, i took around 3 hours to just learn what was a hypothesis. Back then, i questioned things at the subatomic level and many of the teachers who had taught me said ” What you’re asking is quantum physics, you might want to read up on that.” However i did not get the chance to understand what quantum physics was as Wikipedia and books were way beyond my field of understanding. I literally flipped 2 pages of the books and gave up. As for the wiki page.. Go wiki “Quantum Physics” and ask a Primary 5 student (11 year old) about his opinion on the wiki page.

I only got to learn about the idea of quantum physics only this year. Which is the second point in my life where i had a jump in knowledge. I was selected for a science talent programme called ‘ CΩergy’ and i met a teacher called Mr Damian Boh. He has taught me and is still teaching me a lot in the realm of science. I can safely say that this second leap was a tiring yet rewarding experience. As  compared to my first leap in knowledge, this one was to me a lot more efficient and had a higher quality in general.

Now back to the HUGE flaws in my knowledge. Though i do know a lot, its bits and pieces of knowledge here and there about very specific things. I do not have the full knowledge of everything from the base up and it irritates  me a lot. It forces me to think about the loopholes more than i think about progressing further in my knowledge itself. In my opinion, this huge ‘knowledge abyss’ which i’m in right now is the result of my first leap in knowledge being incomplete and inefficient in nature. Why do i say it was inefficient? I was learning at a much much much slower pace as compared to that of which i am currently on. To be honest i can’t blame it on my Primary school teachers, i feel that they have done their best in educating me and i thank them a lot for that. It’s just the fact that in the past, i asked questions which did not really link, causing the HUGE gaps in my knowledge. If i had asked the right questions, my knowledge would, although might not be so advanced but would be more complete.

I feel that students, when they show interest in a particular area, should be guided and helped to develop a more complete knowledge. Rather than building a really long and tall stone rod, why not build a more stable, more solid stone block? Also students should be empowered, in the sense that they get to choose to go further in what they like rather than in what they don’t. Lastly, i feel that a student with the interest in something is like a machine, without being supplied the resources and energy required to run it, it would not work and its potential to accomplish something is just wasted.

To end off, I would like to thank all my friends who have helped me in this journey in my quest for scientific knowledge and all my teachers including Mr Tan Kian Tee, Ms Lee Limin, Mr Tan Teck Nam, Mr Tan Ping Hock, Mr Adrian Yao, Mr Edmund Yong and many others! And last but not least, You, the reader. By reading my blog, you may help me further understand science by pointing out mistakes in my explanations and allow me and the rest of the readers to further understand science!

To the edge of humanity’s knowledge of science we go!

Clyde Lhui 🙂

P.s: I’m starting a YouTube Channel soon and so is my co-writer, Jackson! Stay tuned for more updates.

P.p.s: I’ll be doing a post/video on electricity so0n!